Laws of exponents.
1. \( b^0=1 \)
2. \( b^1=b \)
3. \( b^mb^n=b^{m+n} \)
4. \( \displaystyle\frac{b^m}{b^n}=b^{m-n} \;\;\; \) or \( \;\;\; \displaystyle\frac{b^m}{b^n}=\frac{1}{b^{n-m}} \)
5. \( (ab)^n=a^nb^n \)
6. \( \displaystyle\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n} \)
7. \( \displaystyle\left(b^m\right)^n=b^{mn} \)
8. \( \displaystyle b^{-n}=\frac{1}{b^n} \)
9. \( \displaystyle\left(\frac{a}{b}\right)^{-n}=\frac{b^n}{a^n} \)
10. \( \displaystyle b^{1/n}=\sqrt[n]{b} \)
11. \( \displaystyle b^{m/n}=\left(\sqrt[n]{b}\right)^m \;\;\; \) or \( \;\;\; \displaystyle b^{m/n}=\sqrt[n]{b^m}\)
Note: If \( b\in(0,1)\cup(1,\infty) \) then the one-to-one property holds:
\( b^m=b^n\;\;\;\) if and only if \( \;\;\;m=n \).